Oxford Cambridge and RSA

GCE

Mathematics (MEI)

Unit 4771: Decision Mathematics 1
Advanced Subsidiary GCE

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Questi	Answer	Marks	Guidance
2 (i)	e.g. $0,1,2 \rightarrow$ coffee $3,4,5,6,7,8 \rightarrow$ tea ($9 \rightarrow$ reject and redraw)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	reject proportions + efficient, ie using 9 digits (so allow $00,01, \ldots, 09)$
(ii)	Ten simulated coffees or teas, corresponding to their rule and the given random digits. e.g. T C C T C T T C T C e.g. CTTTTCTTCT	B1	
(iii)	e.g. Coffee at breakfast 00-54 \rightarrow coffee $55-99 \rightarrow$ tea Tea at breakfast $00-14 \rightarrow$ tea $15-99 \rightarrow$ coffee	B1 B1	Breakfast drink must be specified. Breakfast drink must be specified.
(iv)	Ten simulated coffees or teas, using answers to part (ii) to define which rule to use. e.g. C C T C C C C C T C e.g. C C T C C T C C C C e.g. C C C C T T C C C T	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	first 4, ref part (ii) ft errors in (ii)
(v)	Accumulating and computing the proportion. e.g. $C-65 \%$	B1	ft

Question			Answer	Marks	Guidance
5	(a)	(i)	$6 \rightarrow 3 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow \ldots$ (can stop at second "4")	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$6 \rightarrow 3 \rightarrow 10$
5	(a)	(ii)	$256 \rightarrow 128 \rightarrow 64 \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow \ldots$ (as above, or can note repetition from " 16 ")	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	$256 \rightarrow 128 \rightarrow 64$
5	(a)	(iii)	e.g. Step 25 If n is 1 then stop. (Any step number between 21 and 29, or indicated in some other way.)	B1	ISW, but "Step 35" is wrong.
5	(a)	(iv)	Need to know that all chosen numbers lead to 1.	B1	
5	(b)	(i)	Box 1: 2 1 6 A B C Box 2: 3 3 D E Box 3: 5 F 3 boxes	B1 B1	
5	(b)	(ii)	1 2 3 3 5 6 B A D E F C B A E D F C Box 1: 1 2 3 3 B A D E Box 2: 5 F Box 3: 6 C	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	sorted increasing
5	(b)	(iii)	$\left.\begin{array}{lllllll}\left(\begin{array}{lllll}6 & 5 & 3 & 3 & 2\end{array}\right. & 1\end{array}\right) \quad$(C F D E A B)$\quad$ (C F E D A B)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	placing a " 3 " or D or E into box 1

Question				Marks	Guidance
5	(b)	(iv)	e.g. (for fitting into boxes of size 10) $\begin{array}{llllll}6 & 3 & 3 & 2 & 2\end{array}$ Reducing order/first fit: Box 1: 63 Box 2: 3222 Box 3: 2 Optimal: Box 1: 622 Box 2: 3322	M1 A1	valid example correctly doing it
5	(b)	(v)	$30 \times(60 / 6)^{2}=3000$ secs ... 50 minutes	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	multiplying 30 by a squared value

	uesti	Answer	Marks	Guidance
6	(i)	Let x be the number of $(10 \mathrm{~s}$ of $)$ litres of stew and y the number of $(10 \mathrm{~s}$ of $)$ litres of soup that Ian makes.	B1 B1 B1 B1 B1	"number of", referring to soup \& stew identification of soup and stew variables -1 each scaling or systematic error, e.g. equalities
6	(ii)		B1 B1 B1 B1 B1	axes consistently labelled and scaled line 1 line 2 line 3 all $\sqrt{ }$ subject to negative gradients shading giving feasible quadrilateral bounded by axes ... or identified by vertices

Question		Answer	Marks	Guidance
6	(iii)	Line 2 irrelevant. Comparing at $(0,733.3),(533.3 \pm 10,200 \pm 10)$ and $(666.7,0)$ (accuracy quoted is for graphical solutions). Max profit at intersection of lines 1 and $3(533.33,200)$ with profit $£ 3466.67$ (accuracy from 3375 to 3560) (cf $£ 3333.33$ and $£ 2933.33$) So make 533.33 litres of stew and 200 litres of soup, giving a profit of $£ 3466.67$ (3375-3560).	M1 A1 A1	comparing 3 vertices (not origin) or profit line with approximately correct gradient (-5/4) stew and soup (cao) profit (cao)
6	(iv)	Best solution now at $(0,933.3)$... profit $£ 3733.33$ ($£ 373.33$) So best new solution uses 30 kg extra tomatoes (140 kg total) Extra profit is $£(3733.33-3466.67-30 * 2.5)=£ 191.67$	M1 A1 A1	30 kg (allow 140 new total) cao (allow $£ 3658.33$ new total) cao

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee

OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

